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Supplementary Materials  

Versions and detailed parameters of the programs used (commands in grey): 

All programs were run under default parameters if possible. Significance cut-offs for all programs are 

provided in Table S4. The shift size and window size estimated for each dataset with PePr are provided in 

Table S5. For Separate Analysis (SA) approaches, the final peak regions were defined as the intersection 

of the peaks generated from all separate runs; the significance of each peak was defined as the average of 

the ranks in all separate analyses. See details below:  

PePr version 1.0.1: default parameters were used. For TFs:  

PePr –c chip_file –i control _file –f file_format --peaktype=SHARP –remove_artefacts 

For H3K27me3:  

PePr –c chip_file –i control _file –f file_format --peaktype=BROAD 

MACS version1.4.0rc2: default parameters were used.  

macs14 -t chip_file -c control_file 

SPP version 1.10.1: SPP was run with the ENCODE project IDR guidelines. IDR thresholds of 0.01 and 

0.0025 were chosen for the original replicate threshold and pooled-pseudoreplicate threshold, 

respectively. The optimum set was reported.    

Rscript run_spp.R -c=chipSampleRep1.tagAlign.gz -i=controlSampleRep0.tagAlign.gz -npeak=300000 -

odir=/peaks/reps -savr -savp -rf -out=/stats/phantomPeakStatsReps.tab 

MACS2 version 2.0.10.09132012: MACS2 was run with the ENCODE project IDR guidelines. IDR 

thresholds of 0.01 and 0.0025 were chosen for the original replicate threshold and pooled-pseudoreplicate 

threshold, respectively. The optimum set was reported.    

macs2 callpeak -t chipSampleRep1.tagAlign.gz -c controlSampleRep0.tagAlign.gz -f BED -

n chipSampleRep1_VS_controlSampleRep0 -g hs -p 1e-3 --to-large 

ZINBA version 2.01: The alignability function was run with the corresponding genome and read 

mappability file. A default read extension of 90 was used. For histone data, the “broad” argument was 

given.  

generateAlignability(…,athresh=1,extension=90), 

zinba(…, refinepeaks=0,seq=chip_file, input=control_file, filetype=”bed”, extension=90) 

SICER version 1.1: Parameters recommended by the manual were used. The corresponding genome was 

used for each experiment.  A window size of 200 and gap size of 600 were used for broad peaks. The 

fragment size was set to 150.  

SICER.sh chip_file control_file .genome 2 200 150 0.8 600 1E-2 



edgeR version 3.2.4. edgeR-basic: First the reads were shifted (45bp) and counted  in non-overlapping 

windows (200bp).  The read counts and group assignments were prepared in edgeR specified format and 

then the following commands were applied. Windows passing the significance cut-off were deemed 

eligible and then adjacent windows were merged to form a final peak list.  edgeR-plus: All of PePr’s pre-

processing (shift size and window size estimates) and post-processing steps (removing artefacts) were 

applied using our default parameter settings. 

y = DGEList(counts=counts,group = group) 

y = calcNormFactors(y) 

y<-estimateCommonDisp(y, rowsum.filter=5) 

y<-estimateGLMTagwiseDisp(y,design) 

fit_tag<-glmFit(y,design) 

lrt.tagwise<-glmLRT(fit_tag,coef=2) 

DiffBind version 1.10.0: First, SICER was used to call peaks from each sample using the matching input 

samples as controls. The resulting peak lists from all four samples were input to DiffBind, which 

generated 29510 pre-candidate regions. The following commands were then executed to search for 

differential binding regions:  

hpv = dba(sampleSheet="diffbind_sample.csv") 

hpv  = dba.count(hpv) 

hpv = dba.contrast(hpv,hpv$masks$`HPV-`, hpv$masks$`HPV+`, "HPV-", "HPV+") 

For DESeq: 

hpv =dba.analyze(hpv,method=DBA_DESEQ) 

hpv.DB = dba.report(hpv,method=DBA_DESEQ) 

And for edgeR:  

hpv =dba.analyze(hpv, bReduceObjects=F) 

hpv.DB = dba.report(hpv) 

diffReps version 1.55.4: Default parameters. An exact negative binomial test was used. Settings were 

slightly different between TFs and H3K27me3.  

For transcription factors, the sharp option was enabled and a window size of 200 was used:  

diffReps.pl –tr chip_file1 chip_file2 … -co control_file1 control_file2 … -gname genome –me nb –nsd 

sharp –window 200 

For H3K27me3, the default parameters were used (nsd=“broad” and window size 1000): 

diffReps.pl –tr chip_file1 chip_file2 … -co control_file1 control_file2 … -gname genome –me nb –nsd 

 



Supplementary methods for PePr:  

Input read file formats 

PePr currently supports multiple read alignment formats, including SAM, BAM, BED, ELAND_MULTI 

and ELAND_EXTENDED. PePr can analyze two ChIP group comparisons or a group of ChIP samples 

versus control(s), e.g. input samples. The number of samples in each group can be different.  

Preprocessing of data 

Removal of duplicated reads (optional): For every sample, PePr offers the option to remove the 

duplicated reads mapped at the same genomic location. Sometimes the same DNA fragments can be 

sequenced repeatedly due to PCR amplification or library preparation and are over-represented in the 

library. Assuming each piece of DNA in the genome has equal probability of being sequenced, then the 

occurrence of the same sequence read multiple times would be low and would depend on the sequencing 

depth. Therefore, PePr removes extra duplicated reads that are beyond the expected maximum at each 

genomic location. The maximum is calculated using a binomial distribution as specified in (Zhang, et al., 

2008). 

Fragment length estimation: PePr estimates the shift size (half of the DNA fragment length) for each 

ChIP sample and shifts all reads to their 3’ direction by this amount. For single-end ChIP-Seq data, since 

the sequencing read length is shorter than the DNA fragment length, the cluster of forward-strand reads 

and that of reverse-strand reads at the binding sites show a phase lag. Properly shifting both strands of 

reads towards the center of the DNA fragment can improve the power and precision of detecting binding 

sites. For each chromosome, PePr shifts all the reads by several attempted shift sizes (starting at zero and 

increasing base by base), and counts the overlap between reads from forward and reverse strands. The 

shift size which maximizes the overlap is the optimum shift size. For every ChIP sample, the median of 

the estimated shift sizes from five chromosomes (chr1 to chr5) is calculated and used. We use the median 

from five chromosomes to balance speed and robustness against potential outliers; the shift sizes 

estimated from these five chromosomes have been consistent for all datasets tested thus far. If control 

samples are included in the analysis, the average shift size derived from the ChIP samples are applied to 

the controls. 

Window size estimation: To divide the genome into windows, a recommended window size is calculated 

as the estimated average width of the peaks, allowing PePr to optimally capture the reads in peak regions. 

To achieve this goal, we first divide the genome into non-overlapping 20bp bins. For each chromosome, 

the bin with the largest number of reads is chosen as the seed and extended to the flanking bins until a bin 

is reached which has less than 10% of the reads in the seed bin. The combined width of these bins is 

recorded. The abovementioned process is repeated 100 times after which the median of the widths is 

calculated. The median of widths for all chromosomes is the recommended window size. The genome is 

then divided into windows of the chosen (either recommended or user-specified) size that overlap by 50% 

and the number of reads in each window is multiplied by the normalization constant for each sample. 

Normalization: The total number of reads often varies among samples, and the immunoprecipitation 

efficiency can also differ substantially among ChIP samples, which may artificially increase the variation 

among samples if unnormalized, raw read counts are used. Currently, PePr uses the Normalization of 



ChIP-Seq (NCIS) method (Liang and Keles, 2012) to normalize input (control) samples and a modified 

Trimmed Mean of M values (TMM) method to normalize ChIP samples(Robinson and Oshlack, 2010).  

First, PePr splits the genome into 1000bp bins. The mean of all ChIP libraries is used as the reference 

sample, towards which every sample will be normalized. For every input sample i versus the reference r, 

let nig and nrg be the number of reads in the g
th
 genomic bin for the input and reference samples, 

respectively. The normalization factor  ̂ for the input sample is calculated as   

 ̂   
∑       

∑       
.      (1) 

where B represents the background bins (in which no enrichment by the antibody exists). Let        

   , Given background bins are more likely to have lower numbers of reads, we define             ̂ , 

where the count threshold  ̂ is the smallest t for which B consists of > 0.75 of the genome; this percentage 

was used and tested in (Liang and Keles, 2012), and works well as long as the DNA binding protein does 

not bind to >25% of the genome. Finally, the number of reads in each window for the input sample is 

multiplied by its normalization factor,  ̂. The process is then repeated for each input sample.  

To normalize the ChIP samples for different immunoprecipitation efficiencies, for each ChIP 

sample, c, versus the reference r, the bin-wise log fold change for the g
th
 genomic bin is defined as  

        
   

   
      (2) 

and the geometric mean of log read counts is defined as 

   
 

 
             .      (3) 

Where     and     are the raw read counts in the g
th
 bin of the reference sample and target ChIP sample, 

respectively. The trimmed mean of Mg values (TMM) is calculated as the weighted average of Mg after 

removing the upper and lower x percentages of data (based on both Mg and Ag)  as described in (Robinson 

and Oshlack, 2010). The default trimming percentages for Mg and Ag are 20% and 5% respectively. For 

Mg, 20% is a conservative estimate to exclude the differential sites, whereas for Ag, 5% is used to remove 

the highest and lowest signal regions where there may be a high percent of artefacts. The log fold change, 

Mg, is weighted by the mean log read counts. Thus,  

           
∑         

∑       
      (4) 

where   denotes the remaining bins after the trimming. Since we aim to normalize for the difference in 

antibody efficiency among the ChIP samples, the normalization constant should be estimated only from 

enriched regions. Inclusion of background bins will bias the estimator towards the library ratio (e.g., if all 

bins were used the estimator would equal the library total read count ratio). In practice, the number of 

enriched regions varies across different TFs and it may not be clear how many bins should be included 

before we have formally called the peaks. To overcome this uncertainty, PePr sorts the bins by    

         and estimates the TMM from the largest N bins, where N is a vector of values ranging from 

1,000 to 50,000 (1000, 5000, 10000, 20000, 30000, 40000, 50000; the range was set based on the number 



of peaks observed for common TFs and histones). From the several TMMs estimated from the different 

Ns, the one that is most different from the library ratio is reported. This will be close to the optimal TMM 

because as N increases toward the true number of peaks, the TMMs trend away from the library ratio, 

approach the enrichment signal ratio, and then eventually return to converge to the library ratio as N 

surpasses and grows beyond the true number of peaks. Plots illustrating the steps of this normalization 

process are available on our website at http://code.google.com/p/pepr-chip-seq/. 

  

Detection of significant windows 

Read counts in the test and control sample groups (or two ChIP sample groups) are modeled using the 

negative binomial distribution as described here. 

Let Yijk denote the observed number of reads in the i
th 

genomic window(i=1,…,I), the j
th
 

replicate(j=1,…,Jk) and k
th
 group(k=1,2). Assuming a negative binomial distribution, we have  

       ( 
   

  )  
 (        )

       (      )

      

    
    

          
(        )

   (5)  

where 
   

  (    )(j=1,..,Jk)and   is the dispersion factor (as     , the distribution converges to a 

Poisson distribution). By parameterizing the means of read counts for each window i as  
   

   
  
and 

 
   

   
  
, we can test for a significant difference between two groups by testing the following 

hypothesis:  

                         

In the case of test (ChIP) versus control comparisons, the controls are assigned as group 1 and test 

samples are group 2 so only one direction of the hypothesis will be tested; whereas in the case of two 

ChIP group comparisons (i.e. differential binding), a sample/group swap is performed and the hypothesis 

is tested both ways automatically.  

The local dispersion parameter is estimated for each window using a weighted average of initial 

dispersion estimates from local windows in order to gain more robust estimates as described here. The 

log-likelihood for a given window is:  
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where     ̂  
∑     

  
   

  
 

The local dispersion estimator  ̂ maximizes the log likelihood over W nearby windows (including the 

current window) using the triangular weight:  

http://code.google.com/p/pepr-chip-seq/
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The use of a local dispersion estimator provides a stable estimator of the dispersion factor when the 

sample size is small. W is one for the SHARP peak setting and ten for the BROAD peak setting, based on 

observations of autocorrelation in multiple datasets. To calculate the significance, we use an asymptotic 

Wald’s test with log transformation. We can define:  
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Where Zi has an asymptotic standard normal distribution,  ̂   ̅  ̅,  
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P-values are calculated using Zi as the test statistic. Windows satisfying the specified p-value cutoff (the 

default is1e-5) are called as significant windows. Benjamini-Hochberg FDR is also reported.  

Defining peak regions and post-processing of peaks. 

The significant windows that are localized in the same genomic area are merged. PePr has two different 

settings for merging windows; the maximal merging distance is smaller for the SHARP peak setting and 

larger for the BROAD peak setting (to ensure that the broad histone peaks are not broken into multiple 

enrichment regions in a given area). Generally in an explorative analysis when the enrichment shape of 

the peak is unknown to the user, the latter BROAD peak setting is recommended.  

Optionally, PePr can remove peaks due to a high level of PCR duplicates in ChIP samples. Those peaks 

show no strand lag between forward and reverse strand reads (Landt, et al., 2012) and are very likely to be 

false positives; a high proportion of these peaks in the final peak list is an indicator of poor data quality. 

Removing these artifacts requires accurate estimation of the shift size, otherwise we will be risking 

removing true positives. Fortunately, these artifacts also occur in a properly prepared control sample, 

displaying similar read profiles. Thus, PePr tackles this issue by removing peaks that have similar shape 

in both the ChIP and input samples. Specifically, for each peak, let xk be the proportion of reads in the 

peak at nucleotide position x for group k, where k=1 is the ChIP group and k=2 is the input group. 

Reverse-strand reads are counted at their 3’ end. Thus, for each group k,  ∑         , where P is the 

entire set of positions in the peak region.. The minimum of the ChIP and input proportion at each position 

is determined, and the resulting values are summed to define the value R across all positions in the peak 

using the formula:   

   ∑                      (10) 



R ranges from 0 to 1, and will have a high value when the peak shape is similar between ChIPs and 

controls; based on observations, technical artifacts typically have a high R value greater than 0.5, whereas 

R values for most (true) peaks are distributed between 0 and 0.2. PePr removes the peaks having R value 

greater than 0.5.  

Additionally, PePr evaluates the overlap between forward-strand reads and reverse-strand reads (counted 

at their 3’ end) before and after shifting. A peak with strand-overlap-ratio that is high (> 0.2) before 

shifting and decreases significantly after shifting (decrease >50% of the original level) is removed by 

PePr. Most PCR-duplicate peaks simultaneously meet both of the two criteria defined above. These 

removed peaks are reported in a separate file.  

Finally, PePr offers the option to refine the peak width for sharp peaks. Typically for TFs, downstream 

analysis such as motif analysis works optimally with a fine resolution of the peaks (i.e. reduced to 

minimal width that may contain the core protein-protected binding region). In an ideal (hypothetical) 

ChIP experiment, the core DNA binding site would be between the last starting position of the forward-

strand reads and the first starting position of the reverse-strand reads. However, real-life ChIP-Seq 

experiments are “contaminated” substantially by the background sequences (the percentages were 

observed to vary from 30% to close to 100% of the library (Liang and Keles, 2012)) and complicated by 

other technical factors influencing mappability and sequencability. Therefore, we use a more robust 

method to narrow the peak width without losing the protected region by setting the left boundary to be at 

the 20% quantile of the starting position from the forward-strand reads and the right boundary to be at the 

80% quantile of the starting position from the reverse–strand reads. These percentages are conservatively 

chosen. 

Differential peak binding: the differential binding analysis entails an extra step compared to the peak 

calling analysis. In addition to the routine pre-processing steps, the reads in each window of an input 

sample will be subtracted from its respective paired ChIP sample if they are matched. In the case of 

uneven number of ChIP/input samples within each group or unpaired ChIP and input samples, the mean 

input reads will be subtracted from each ChIP sample. Any negative resulting values are redefined as zero 

counts. As mentioned earlier, the hypothesis will be tested both ways, calling differential binding sites 

enriched in each group.   

 

  



Table S1. ENCODE data descriptions 

Dataset Cell line Genome Source 

NRSF* K562 hg18 HudsonAlpha 

CTCF GM12878 hg19 Broad 

GABP GM12878 hg19 HudsonAlpha 

NRF1 GM12878 hg19 Stanford 

SMC3 GM12878 hg19 Stanford 

USF1 GM12878 hg19 HudsonAlpha 

USF2 GM12878 hg19 Stanford 

*Note: NRSF from GM12878 (hg19) was also tested; however, it was of poor quality, and had a large percent of   

peaks with zero shift size between strands).  

 

Table S2. Total number of mapped reads in each sample. 

Dataset Sample Number of reads 

(Millions) 

Sample  Number of reads 

(Millions) 

NRSF ChIP rep1 16.1 Control rep1 16.3 

ChIP rep2 26.6 Control rep2 14.3 

ATF4 

ChIP rep1 28.4 Control rep1 26.8 

ChIP rep2 30.0 Control rep2 27.5 

ChIP rep3 30.2 Control rep3 28.2 

CTCF ChIP rep1 11.5 Control rep1 7.1 

ChIP rep2 20.2 Control rep2 6.4 

GABP ChIP rep1 18.4 Control rep1 5.0 

ChIP rep2 29.3 Control rep2 4.2 

NRF1 ChIP rep1 12.2 Control rep1 5.9 

ChIP rep2 25.7 Control rep2 5.0 

SMC3 ChIP rep1 22.8 Control rep1 5.9 

ChIP rep2 27.4 Control rep2 5.0 

USF1 ChIP rep1 17.0 Control rep1 5.0 

ChIP rep2 30.1 Control rep2 4.2 

USF2 ChIP rep1 15.7 Control rep1 5.9 

ChIP rep2 14.2 Control rep2 5.0 

 

H3K27me3 

HPV(+) ChIP rep1 72.2 HPV(+) control rep1 86.8 

HPV(+)ChIP rep2 85.0 HPV(+)control rep2 77.9 

HPV(-) ChIP rep1 91.3 HPV(-) control rep1 66.5 

HPV(-) ChIP rep2 79.4 HPV(-) control rep2 83.6 

 



Table S3. Total number of peaks identified in each TF dataset.  

Dataset 

Method 
NRSF ATF4 CTCF GABP NRF1 SMC3 USF1 USF2 

PePr 5,284 15,338 34,548 5,158 4,729 25,789 6,837 5,025 

MACS-CR 15,068 39,774 50,286 5,920 13,052 48,945 36,517 26,755 

ZINBA-CR 9,468 25,684 57,398 5,880 14,052 62,044 12,343 23,376 

MACS-SA 4,495 10,592 38,576 3,122 5,344 15,861 5,777 7,476 

ZINBA-SA 5,374 11,453 41,675 4,613 6,286 21,912 5,706 9,060 

MACS2-IDR 4,946 9,337 35,033 3,991 5,584 23,274 6,364 6,078 

SPP-IDR 4,861 12,160 40,006 5,095 5,042 25,470 7,074 6,794 

diffReps 6,030 5,781 29,317 3,992 3,474 3,499 4,270 3,642 

edgeR-basic 6,790 14,463 43,443 6,962 6,643 15,731 7,581 16,397 

edgeR-plus 7,868 14,057 40,841 8,116 9,667 13,303 7,315 12,426 

 

Table S4. Significance cut-offs for ChIP-Seq programs involved:  

Program     Significance cutoff 

PePr     p-value < 1e-5 

MACS     p-value < 1e-5 

ZINBA     Posterior Probability> 0.95 

SICER     FDR < 1e-2 

MACS2-IDR     *optimum set 

SPP-IDR     *optimum set  

edgeR     p-value < 1e-4 

diffReps     p-value < 1e-4 

DiffBind     FDR < 0.1 

*See program parameters for details. 

  



 

Table S5. Window sizes and shift sizes estimated for each dataset with PePr 

Dataset Window size (bp) Shift sizes (bp) 

NRSF 200 48, 46 (rep1,rep2) 

ATF4 160 48, 40, 39 (rep1, rep2, rep3) 

CTCF 260 86, 78 (rep1, rep2) 

GABP 240 33, 47 (rep1, rep2) 

NRF1 200 41, 54 (rep1, rep2) 

SMC3 220 60, 53 (rep1, rep2) 

USF1 200 40, 53 (rep1, rep2) 

USF2 200 68, 55 (rep1, rep2) 

H3K27me3 336 92, 91, 88, 90 (HPV(-) rep1,2, HPV(+) rep1,2) 

 

 



 

Figure S1. Motif logos for all TFs used in our comparisons. (A) Motif logo identified by MEME for 

NRSF data. NRSF binding sites have variable spacing between the two halves of the motif. (B-H) Motif 

logo identified by MEME for ATF4 (B), CTCF (C), GABP (D), NRF1 (E), SMC3 (F), USF1 (G) and 

USF2 (H).   

  



 

 

Figure S2. Extra-variance beyond that of the Poisson distribution is observed in ChIP-Seq data.  

Plot of mean versus variance estimates for windows across the genome in (A) NRSF ChIP-Seq data with 

two replicates (window size of 200bp), (B) ATF4 ChIP-Seq data with three biological replicates (window 

size of 160bp), and (C) H3K27me3 ChIP-Seq data from squamous cell carcinoma cell lines, with four 

replicates (window size of 340bp). The red line indicates the expected fit based on the Poisson 

distribution. The blue line is the fitted curve estimated using cubic smoothing spline. 

  



 

Figure S3. H3K27me3 data show a high autocorrelation of the dispersion parameters estimated for 

nearby windows. The genome was split into non-overlapping windows of 336 bp (Optimal window size 

estimated by PePr) and the dispersion parameter for each window was estimated. The autocorrelation of 

the dispersion parameters of the windows separated by (i-1) windows showed a correlation coefficient 

greater than 0.4 for to the range of 10 - 20 windows apart.  

  



 

Figure S4. Comparison of PePr to ZINBA-CR (A) ZINBA-SA (B) and edgeR-basic (C) on NRSF 

data. (i) Venn diagram of overlap between peaks found by PePr and the alternative approach. (ii) 

Representative genomic view of the unique peaks. Each line represents one of the replicates in the group, 

with the top window being the test group and the bottom window being the control group. (iii) Heatmaps 

showing the signal intensity of the test group across the unique peaks. The x-axis denotes the relative 

chromosomal locations centered at the peak mode; each row denotes one peak. (iv) Average signal 

intensity of the unique peaks. Solid lines represent the test group, while dashed lines represent the control 

group. 

  



 

Figure S5. Rank comparisons between PePr and the alternative approaches on NRSF data. Rank 

comparisons between PePr and (A) MACS-CR (Pearson’s r=0.73), (B) MACS2-IDR (r=0.65), (C) SPP-

IDR (r=0.93), (D) MACS-SA (r=0.79), (E) edgeR-plus (r=0.84), (F) diffReps (r=-0.25), (G) ZINBA-CR 

(r=0.14), (H) ZINBA-SA (r=0.16),  and (I) edgeR-basic (r=0.78). The peaks are ranked by the 

significance for each program. The points located at the top of each plot are PePr-unique peaks, and the 

points on the right margin of each plot are unique peaks for the alternative approach. Red and orange 

points refer to subsets of PePr-unique and alternative-approach-unique peaks which were used in the 

enrichment signal and motif occurrence comparisons.  

  



 

Figure S6. Rank comparisons between PePr and the alternative approaches on ATF4 data. Rank 

comparisons between PePr and (A) MACS-CR (Perason’s r=0.82), (B) MACS2-IDR (r=0.82), (C) SPP-

IDR (r=0.90), (D) MACS-SA (r=0.86), (E) edgeR-plus (r=0.51), (F) diffReps (r=-0.14), (G) ZINBA-CR 

(r=0.28), (H) ZINBA-SA (r=0.68), and (I) edgeR-basic (r=0.56). The peaks are ranked by the significance 

for each program. The points located at the top of each plot are PePr-unique peaks, and the points on the 

right margin of each plot are unique peaks for the alternative approach. Red and orange points refer to 

subsets of PePr-unique and alternative-approach-unique peaks which were used in the enrichment signal 

and motif occurrence comparisons.  

 



 

chr8:136,167,288-136,167,570   chr20: 51,826,362-51,826,600 

 

chr8: 53,290,218-53,290,494   chrX: 47,910,826-47,911,019 

 

chr11: 21,363,879-21,364,065   chr4: 87,890,603-87,890,850 

Figure S7. Additional examples of peak profiles uniquely identified by all CR- and IDR-based 

approaches (MACS, MACS2, ZINBA, and SPP) in NRSF data. For each plot, the x-axis denotes the 

genomic coordinates in base pairs, and the y-axis shows the read coverage. The top half of the plot shows 

the ChIP samples with green and red representing the two different replicates. The bottom half of the plot 

shows the input control samples in matching colors, with no line indicating zero reads across the region. 



 

chr1: 241,248,950 – 241,249,250   chr2: 129,917,055 – 129,917,355 

 

chr10: 38,911,975-38,912,275   chr19: 32,431,504 – 32,431,804 

 

chr10: 41,918,244 – 41,918,544   chrY: 57,382,337 – 57,382,637 

Figure S8. Examples of peaks uniquely identified by diffReps (not found by PePr) that are strongly 

spiked at the size of read length and/or exhibit the same peak profile for both ChIP-Seq and control 

samples. For each plot, the x-axis denotes the genomic coordinates in base pairs, and the y-axis shows the 

read coverage. The top half of the plot shows the ChIP samples with green and red lines representing the 

two different replicates, whereas the bottom half of the plot shows the input control samples in matching 

colors. 



 

 

Figure S9. Comparison of PePr to ZINBA-CR (A), ZINBA-SA (B) and edgeR-basic (C) on ATF4 

data. (i) Venn diagram of overlap between peaks found by PePr and the alternative approach. (ii) 

Representative genomic view of the unique peaks. Each line represents one of the replicates in the group, 

with the top window being the test group and the bottom window being the control group. (iii) Heatmaps 

showing the signal intensity of the test group across the unique peaks. The x-axis denotes the relative 

chromosomal locations centered at the peak mode; each row denotes one peak. (iv) Average signal 

intensity of the unique peaks. Solid lines represent the test group, while dashed lines represent the control 

group. 

 

  



 

 

 

Figure S10. Example of an H3K27me3 enriched region showing high variation of ChIP-Seq signals 

across samples. Each profile represents one ChIP-Seq sample, with the x-axis and y-axis denoting 

chromosomal location and read coverage respectively.  
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Figure S11. A scaling FDR analysis of the  H3k27me3 dataset shows PePr was most robust to 

differences in read coverage level. The scaling FDR was calculated for PePr, ZINBA, SICER, diffReps, 

and edgeR on the H3K27me3 data as described in the main text. PePr had the lowest scaling FDR 

estimate of the methods tested.  
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